Assignment 5

Hand in no. 1, 5, 6 and 8 by October 10, 2023.

- 1. In class we showed that the set $P = \{f: f(x) > 0, \forall x \in [a,b]\}$ is an open set in C[a,b]. Show that it is no longer true if the norm is replaced by the L^1 -norm. In other words, for each $f \in P$ and each $\varepsilon > 0$, there is some continuous g which is negative somewhere such that $||g f||_1 < \varepsilon$.
- 2. Show that [a, b] can be expressed as the intersection of countable open intervals. It shows in particular that countable intersection of open sets may not be open.
- 3. Optional. Show that every open set in \mathbb{R} can be written as a countable union of disjoint open intervals. Suggestion: Introduce an equivalence relation $x \sim y$ if x and y belongs to the same open interval in the open set and observe that there are at most countable many such intervals.
- 4. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R} :
 - (a) $[1,2) \cup (2,5) \cup \{10\}.$
 - (b) $[0,1] \cap \mathbb{Q}$.
 - (c) $\bigcup_{k=1}^{\infty} (1/(k+1), 1/k)$.
 - (d) $\{1, 2, 3, \dots\}$.
- 5. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^2 :
 - (a) $R \equiv [0,1) \times [2,3) \cup \{0\} \times (3,5)$.
 - (b) $\{(x,y): 1 < x^2 + y^2 \le 9\}.$
 - (c) $\mathbb{R}^2 \setminus \{(1,0), (1/2,0), (1/3,0), (1/4,0), \cdots \}.$
- 6. Describe the closure and interior of the following sets in C[0,1]:
 - (a) $\{f: f(x) > -1, \forall x \in [0,1]\}.$
 - (b) $\{f: f(0) = f(1)\}.$
- 7. Let A and B be subsets of (X, d). Show that

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
.

Is it true that

$$\overline{A \cap B} = \overline{A} \cap \overline{B}$$
?

8. Show that $\overline{E} = \{x \in X : d(x, E) = 0\}$ for every non-empty $E \subset X$.